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Summay.

The possibility of developing new processing strategies for high
temperature intermetalliic compounds is being investigated. In particular
rapid solidification followed by controlled heat treatment may provide new
and unusual microstructures of multiphase materials. This report describes
research performed at NIST to develop predictive models for solubility
extension and metastable phase formation of intermetallic compounds and
research to improve the phase diagram modeling of systems involving ordered
phases. . <M91,_> Q_.—————

Theory hés been developed to predict the formation of disordered form of
intermetallic compounds during rapid solidification. Using a modification of
the Aziz solute trapping theory, solidification velocities required to form,
for example, a BCC phase from the melt when a B2 phase is the stable phase
have been developed. In the present reporting period, this theory has been
extended to the case where a FCC phase replaces a L1, phase.

Experimental research has continued on the intermetallic system, NiAl-
NiTi, using laser surface melting and examination by transmission electron
microscopy. In the NiAl-NiTi system, the equilibrium intermediate Heusler
phase, Ni,AlTi, was suppressed by rapid solidification and extensien ot the
composition range of the NiAl and NiTi phases was observed by melt spinfing.
To quantify the solidification rates required for this process, samples have
been prepared by pulsed laser melting where the solidification rate can be
varied between 1-10 m/s. Preliminary experiments show the formation of the
B2 phase at the Ni,AlTi composition, which under equilibrium processing forms
the L2, structure.

Experimental work on termary alloys surrounding the composition Ti,NbAl



to determine the phases present in arc melted and heat treated samples has
continued. TEM investigations are required to sort out the complex ordering
reactions in this important alloy system. A broad equilibrium composition
range for the B2 phase has been identified at 1100°C and complex low
temperature (~700°C) transitions are being examined.

An evaluation of existing data and a thermodynamic calculation of the
Ti-Al-Ta phase diagram has been initiated using the THERMOCALC code. This
activity was requested at the March 1988 review of the DARPA/ONR Program on
"Development of High Temperature Intermetallics for Structural Aerospace
Applications™ at Pratt & Whitney, Florida.

I. Introduction

The development of high temperature materials is closely related to the
formulation of processing strategies for chemically ordered phases. Most
intermetallic compounds including aluminides, carbides, and silicides as well
as high temperature ceramic phases are ordered. However, optimum mechanical
properties are likely to come from intimate dispersions of several phases,
some of which are ordered. These dispersions can be produced by a phase
transformation sequence involving both ordering and phase separation
beginning with a solid phase of a carefully selected unstable composition
made by rapid solidification. ’

Recently, significant advances have occurred in the utilization and
understanding of rapid solidification processing of alloys. Factors which
promote refined segregation, solubility extension and metastable phasé
formation have been identified. However, much of this research has been
focused towards disordered crystalline phases: i.e., terminal solid

solutions, not ordered intermetallic compounds.




At the same time, significant advances have been realized in the
thermodynamics and kinetics of order-disorder transitions. The distinction
between first and higher order transitions has been clarified, the kinetics
of ordering reactions and the structure and mobility of APB’s have been
determined and reactions that involve fine scale ordering and compositional
separation have been studied.

This research attempts to combine the advances in these areas to develop
new processing strategies for high temperature ordered multiphase materials.

In section II of this report we describe theoretical and experimental
research focused on determining the possibility of extending the solubility
range of ordered phases by rapid solidification. Subsequent heat treatment
of these metastable alloys can form stable high temperature multiphase
mixtures. This research also includes an examination of the state of
nonequilibrium order of rapidly quenched intermetallic compounds.

Section 111 of this report summarizes research at phase identification
in composition surrounding Ti,NbAl.

Section IV of this report describes phase diagram activities involving
ordered phases. A preliminary calculation of the ternary diagram Ti:Ta-Al
has been produced. :

II. Solubility Extension and Disordering of Intermetallic Compounds by'Rapid

Solidification

(a) Theory of Solute & Disorder Trapping by Rapid Solidification

A model has been developed to predict the long range order parameéer and
composition of a chemically ordered phase as a function of interface
velocity. The details of this model were described in the previous semi-

annual report. The model is an extension of the solute trapping model of
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Aziz and relies on an analysis of the interdiffusion across the liquid solid
interface between a liquid phase and a solid composed of two sublattices.
The model predicts the transition from solidification of a solid phase with
equilibrium long range order parameter and with equilibrium partitioning of
composition at low interface velocity to solidification of a disordered
crystalline solid with the same composition as the liquid at high
solidification velocity.

A broad range of experimental results on rapid solidification of
intermetallic compounds suggests that solute trapping and disorder trapping
do not occur for line compounds under melt spinning conditions. Trapping
seems only to occur for ordered phases in which the ordering is not so
strong; i.e., where the equilibrium composition range is large (~10%). The
general theory was explored and a simple result related to this point has
been obtained. The critical velocity for the trapping of disorder, V.; i.e.,
the velocity above which only the disordered variant of the intermetallic
compound can form can be estimated from

T
C

V = VD(T— - 1)
m

C

where V, is the ratio of the interface diffusivity to the jump distanée (~102
cm/s), Te is the critical temperature for the order-disorder transition, and
T, is the melting point of the compound. When the compound is ordered up to
its melting point Tc/T, > 1. One can see that the higher T., which relates
directly to the strength of the ordering, the higher the velocity requ@red to
trap disorder. For line compounds T, >> T, and thus V. may be unattainable
in normal rapid solidification methods.

The results of this theory have been calculated for solids which have

first and second order ordering transitions during the current reporting
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period. Discontinuities in both order parameter and solid composition occur
when the growth velocity is increased when the equilibrium ordering reaction
is first order. These results are described in detail in the preprint
enclosed in the appendix.

(b) NiAl-NiTi Alloys

In previous reports experimental research on the microstructure of melt
spun alloys in the NiAl-NiTi system was described. Eutectic alloys of NiAl-
Ni,TiAl and Ni,TiAl-NiTi solidified as a single B2 phase. However, results
on alloys with composition Ni,TiAl were not clear. The APB size was
sufficiently coarse that the non-equilibrium solidification product could not
be determined with certainty. In collaboration with Professor Mike Aziz of
Harvard we have performed pico-second pulse melting. This technique produces
solidification rates of 1-5 m/s. 1Initial results show that extremely fine
L2, domains are produced by this technique suggesting that the solidification
process produced the B2 phase with subsequent solid state ordering to the L2,
structure. Future experiments with this method will permit testing of the
theory described in the previous section.

III. B2 and Related Phases in the Ti-Al-Nb System .

Titanium aluminides (Ti,Al and TiAl) with ~10 at$ Nb additioms have
received considerable attention as potential low density, high strength and
creep resistant materials. However, the phase equilibria in this ternary
system is poorly understood. Because the presence of BCC-based phases in
these alloys seems to play an important role in the deformation, in-débth
studies of the BCC-based phase fields are being conducted. A series of
alloys surrounding the composition Ti,AlNb are being studied by TEM to

determine the structure of phases present in arc cast, melt spun and heat




treated samples. When complete, these results, combined with those from the
University of Wisconsin by J. Perepezko and Y. A. Chang under DARPA
sponsorship, will be combined with ternary phase diagram calculations
performed under this contract to determine the ternary phase diagrams Ti-Nb-
Al.

(a) Literature Survey

Experimental work focused on ternary equilibria in the BCC field of the
Ti-Al-Nb system is sparce. Strychor, Williams and Soffa (Met. Trans 19A

(1988) 225) have shown that alloys with ~25 at% Al and between 7 and 20 at%

Nb which are quenched from 1250°C are single phase B2 with APB’s. This

indicates that the BCC to B2 transition for these compositions occurs below
1250°C. Quenched alloys with 0-7 at% Nb are HCP a' martensite. The B2
alloys also contain a tweed structure of ordered w phase. During aging at
400°C for 100 hours, the B2 phase was partially consumed by an ordered w
phase. Evidence for additional ordering of w into a B8, (Zr,Al) phase is
also presented. No DO,, phase was observed to form for alloys with greater
than 7 at% Nb.

Banerjee, Gogia, Nandi and Joshi (Acta Met. 36 (1988) 871) have studied
the composition Ti-25 at% Al-12.5 at$ Al. Alloys held at 1100°C for 3 hours
and quenched contain a,(DO,4) and B2 phases. The BZ phase contains no APB's.
This indicates the equilibria at 1100°C is DO,y + B2, not DO,, + BCC.

Furnace cooling of this structure yields microstructures that suggest that
both of the phases transform partially to an orthovhombic O(Cd,Er) phaée with
symmetry Cmcm. Evidence is presented that a, - a, + 0 by simultaneous
ordering and spinodal decomposition and that the B2 phase also transforms by

nucleation and growth to the orthorhombic phase. They also infer that the
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orthorhombic phase has a preferred stoichiometry of Ti,NbAl.

Banerjee, Nandy and Gogia (Scripta Met. 21 (1987) 597) have examined the
site occupancy of the B2 phase which occurs in a two-phase mixture with the
a, phase in heat treated samples (no temperature given) of Ti-25.6 at% Al-
10.1 at$ Nb. Using channeling enhanced microanalysis they determined that
one sublattice was mostly Ti while the other contained the excess Ti and the
Al and Nb atoms. Using site fractions x{, they give

Xr, X2, X%, | .96 0 .04

| |
| '
| £, x5, By | .28 .48 .24

(b) Experimental Procedure

Alloys shown in Table 1 were prepared by arc melting. In excess of ten

remelts were necessary to homogenize the buttons.

Table 1. Ti-Al-Nb Alloys Under Investigation

Ingot # ats Ti ats Al ats Nb ppm O ppm N ppm H
30 50 (51.1) 25 (23.9) 25 (25.0) 500 130 22
01 50 (50.6) 12.5 (12.2) 37.5 (37.2) 500 320 34
02 37.5 (38.1) 25 (24.3) 37.5 (37.6) 290 30 7
03 62.5 (63.5) 25 (24.2) 12.5 (12.3) 520 90 12
04 50 (51.4) 37.5 (36.2) 12.5 (12.4) 63C 50 7

Cast structures were homogenized with a 3 hour heat treatment at.1400°C
in a vacuum-tight furnace under 2/3 atm gettered Argon. It was found
necessary to rest sample; on a Y,0, coated Al,0, substrate to prevent
reaction with Al,0,. Cooling was performed by lowering the samples out of
the hot zone of the furnace into a lower chamber. The cooling rate was
estimated by visual observation and by measurements of the furnace vendor to
be ~400 K/min. Heat treatments at 1100°C were performed after the 1400°C
treatment by lowering the furnace temperature. Equilibration at 1100°C.

occurred in ~5 min. Heat treatments at 700°C were performed by sealing




individual samples from the 1400°C treatment in quartz tubes. Samples were
wrapped in Ta foil and tubes were backfilled with 2/3 atm He.

Chemical analysis was performed on the samples homogenized at 1400°C.
Because these samples were nominally single phase when viewed by optical or
SEM metallography, microprobe analysis with elemental standards yields
reliable analysis of the bulk alloy compositions. The values obtained are
given in parentheses in Table 1. Oxygen, nitrogen and hydrogen analysis was
performed on these samples by a commercial vendor and is also given in Table
1.

(c) Results

The results of microstructural investigation of phase identification to
date are summarized in Table 2. Considerable solid state transformation
occurs during cooling in some samples. Actual phases present are listed
along with the inferred equilibrium at temperature and the decomposition
path. The results combine observations made by optical metallography, x-ray
diffraction and electron microscopy.

Microstructure of Arc Melted Buttons - Optical metallography of the as-

cast buttons revealed dendritic but single phase structures in all samples
except #03. Microsegregation was small (<1%) but the cores of the dendrites

were rich in Nb as judged from backscatter contrast. Observation of grain

boundaries cutting across dendrite arms suggests significant grain coarsening
(up to 300 um) during solid state cooling. In sample #03, a fine martensitic

plate structure was visible. X-ray diffraction indicited the structure to be

DO, 4 (Ti,Al).

Microstructure of Samples Heat Treated at 1400°C - Optical metallography

of the samples cooled from 1400°C reveals the absence of dendritic
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microsegregation and very coarse grains (~2 mm). The microstructures appear
essentially featureless with the exception of #03 which is martensitic. TEM
examination of the martensitic sample indicates complete transiormation from
the high temperature phase which existed at 1400°C to a DO,y martensite. The
other four compositions consist primarily of a B2 or related phase. Although
no APB’s were observed, previous research by Banerjee et al. and Strychor et
al. suggest a BCC » B2 ordering occurs -1200°C. We thus infer that the
equilibrium phase at 1400°C is BCC for all five alloys. However, the
possibility exists that for some compositions the B2 is stable at 1400°C.
High temperature x-ray diffraction will be used to answer this point.

Besides the B2 ordering which occurs during cooling, sample #04
completely transforms to ordered w (or possible B8,). Sample #30 contains
small plates of twinned DO,q.

Microstructure of Samples Heat Treated at 1100°C fcr Four Days - The

microstructure of samples #03, #30, and #0l1 cooled from 1100°C are identical
to those cooled from 1400°C. 0Oddly the result for #03, that the phase
present at 1100°C after 3 hours is B2, directly contradicts the result of
Banerjee et al. who found B2 + DO;, under these conditions. This may be
related to differences in cooling rate.

Sample #02 contained B2 and o phases while sample #04 contained B2 +
DO,g. The B2 in this alloy #04 was completely transformed to ordered w.

(d) Future Research

Future work will involve an analysis of the phases present at 706°C
after a one month annealing. The calculated ternary phase diagram Ti-Al-Nb
which was presented in the last report will be modified to be consistent with

this new data and other data generated by J. H. Perepezko and Y. A. Chang at
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the University of Wisconsin, Madison, under DARPA sponsorship.
1V. Phase Diagram Modeling

We have undertaken a preliminary calculation of the Ti-Al-Ta ternary
system in response to requests by Ralph Hecht, Pratt-Whitney, Florida, for
use in their DARPA Program "High Temperature Metallics for Structural
Aerospace Applications."

A preliminary calculation of the Ti-Al-Ta ternary phase diagram was
undertaken using the THERMOCALC DATABANK system described by B. Sundman, B.
Jansson and J. 0. Anderson (CALPHAD 9, 2 (1985) pp. 153-190). The stability
ranges were adjusted to match the isothermal section at 1100°C by Sridharan
and Nowotny (Z. Metallkunde 74 (1983) 468).

In the calculations of the binary systems the liquid and elemental
phases were described as sub-regular solutions. The intermetallic compounds
in the Ta-Al and Ti-Al were described with the Wagner-Schottky model, where
intermetallic compounds are considered to consist of different sublattices
allowing substitutional solutions on each of these sublattices. Since the
Wagner-Schottky model is mathematically a special case of the sublattice
model, the parameters of these intermetallic compounds can be easily
transformed to the sublattice mode) description of the THERMOCALC DATABANK
system. For the present only the ¢ and TaAl, intermetallics were modeled in
the Ta-Al binary.

For the extrapolation of ternary Ti-Ta-Al system all phases must be
allowed to have ternary ranges of homogeneity, which means for the Waéher-
Schottky phase that they have to be modeled as metastable phases for the two
other binary systems.

As a first approximation the Gibbs energies of formation of the Ta-Al

12



compounds in the Ti-Al system and the Ti-Al compounds in the Ta-Al system
were assumed to be the same as in the system where these compounds are
stable, for the Ta-Ti system the Gibbs energies of formation were assumed to
be the same as for these compounds consisting only of Ta or Ti, respectively.

In order to prevent these metastable phases from becoming stable in the
binary systems and to adjust the calculated phase diagram to experimental
results at 1100°C, the Gibbs free energies of formation of these metastable
phases were adjusted by assuming that the entropies of formation of the
metastable phases have the same magnitude as the stable phases and the
enthalpies of formation of the metastable phases are more positive than those
of the stable phases. The ternary ranges of homogeneity at 1100°C calculated
with these parameters were acceptable except for the hcp and L1, phase, where
they were too small. This was adjusted by giving the Ta-Al interaction term
of the hcp phase the most negative value possible, without the hcp-phase
becoming stable in the Ta-Al system. For the Ll,-phase ternary interaction
terms were introduced between Al and Ta on the first sublattice and with Ti
on the second one and between Al and Ti on the first sublattice and Ta on the
second one.

The calculated binary diagrams used for the Ti-Ta-Al ternary talculation
are shown in Figures 1, 2, and 3. The correct Ti-Al and Ta-Al diagrams are
still subject to debate in some regions and can be modified at a later time.

The results obtained from the calculations with these parameters are
shown in Figures 4, 5, and 6. Ternary phases were omitted at this ini?ial
stage. Figures 4 and 5 show isothermal sections at 1100, and 1400°C, while
Figure 6 shows the liquidus projection.

Further work on phase diagram modeling in this system must await a more

13




precise definition of the measured phase boundaries.

V. Fiscal Status

(1) Amount currently provided for contract program
$150,000 for period February 9, 1987 to September 30, 1987.
$200,000 for period October 1, 1987 to September 30, 1988.

(b) Expenditure and commitment during April 1, 1988 to September 30, 1988
$100,000

(c) Estimated funds required to complete this work

October to December 1988 $50,000

January to March 1989 $50,000

April to June 1989 $50,000

July to September 1989 $50,000

October to December 1989 $50,000
14



Figure Captions

Figure 1. Calculated Ti-Al phase diagram used for calculation of Ti-Al-Ta
ternary diagram.

Figure 2. Calculated Ti-Ta phase diagram used for calculation of Ti-Al-Ta
ternary diagram.

Figure 3. Calculated Ta-Al phase diagram used for calculation of Ti-Al-Ta
ternary diagram.

Figure 4. Calculated isothermal section of the Ti-Al-Ta ternary phase
diagram at 100°C omitting ternary phases.

Figure 5. Calculated isothermal section of the Ti-Al-Ta ternary phase
diagram at 1400°C omitting ternary phases.

Figure 6. Calculated liquidus and solidus invariants of the Ti-Al-Ta ternary
phase diagram omitting ternary phases (liquidus invariants have double

arrows).
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A Theory for the Trapping of Disorder and Solute in Intermetallic
Phases by Rapid Solidification

William J. Boettinger
Metallurgy Division
National Institute for Standards and Technology
(formerly National Bureau of Standards)
Gaithersburg, MD 20899
and
Michael J. Aziz
Division of Applied Sciences

Harvard University
Cambridge, MA 02138

A theory is developed to predict the long range order parameter, composition and
interfacial temperature of a chemically ordered phase as a function of interface velocity
during rapid crystal growth. The theory extends the solute trapping theory of Aziz to a
solid phase consisting of two sublattices. The engulfinent of atoms randomly on the two
sublattices by the rapidly moving interface is balanced against the interdiffusion across
the liquid-solid interface which attempts to restore local equilibrium. With increasing
interface velocity the theory predicts a transition from the solidification of a phase with
equilibrium long range order parameter and with equilibrium solute partitioning to the
solidification of a disordered crystalline phase with the same composition as the liquid.
Predictions for various free energy functions for the solid phase suggest that the decrease
of order parameter with increasing interface velocity may be continuous or discontinuous
and that transitions to solute trapping and to disorder trapping can occur at different
growth rates.

1. Introduction
Over the years, considerable attention has been paid to the kinetics of motion of the

interface separating two phases, especially to the kinetics of solidification of a melt.




Recent interest in the rapid solidification processing of alloys and other materials using
transformations far from equilibrium has renewed interest in these kinetics. Theories of
nonequilibrium incorporation of solute into rapidly growing crystals (1-9) are currently
the focus of experimental tests (10,11). An interesting additional possibility occurs for
intermetallic compounds or other crystals with long range chemical order. Rapid growth
can also cause the formation of crystals with nonequilibrium long range order. Because
ordering in the solid state during post—solidification cooling can mask events at the
liquid-solid interface quantitative experiments to measure the state of long-range order of
the solidifying material are difficult to design. However, the observation of solidified
phases with high densities of antiphase domains when the phase is normally ordered to the
melting point is a clear indication that disorder has been trapped by the process of rapid
solidification (12-15).

Kinetic theories for trapping generally fall into two categories: ditfuse interface and
chemical reaction rate theories. Diffuse interface theories (16-17) solve the Cahn-Hilliard
Equation in a moving frame and predict in a formal way that certain kinds of disorder can
be induced into a growing phase by rapid interface motion. Chernov has developed a
chemical reaction-rate theory that has been applied to both solute trapping during rapid
solidification of disordered solid solutions and disorder trapping during solidification of
stoichiometric compounds (18). Analytic and Monte—Carlo models of solute trapping
based on very similar principles to Chernov's have been developed by others (19-22).
Probabilities are assigned for each species to hop into or out of the crystal based on the
temperature and the chemical (and structural, e.g., location at a kink) environment; the
net hopping rates are summed to yield the growth velocity. In the language of the
thermodynamics of irreversible processes, the flux of each species across the interface is a

function of the conjugate driving force (chemical potential difference across the interface)




for that species only, being independent of the driving force for the other species.
According to these models. for the impurity to be incorporated into a high—energy site
(the wrong sublattice in disorder trapping; any lattice site in solute trapping), it must
actively hop into it.

The main innovation in the approach of Aziz (1) is that if the impurity does nothing
it may end up on a high—energy site by virtue of the formation by its neighbors of a
regular lattice around it. Hence to avoid incorporation onto a high—energy lattice site, an
atom must diffuse away. (For growth of compounds some of the atoms, of course. will by
chance be incorporated onto the right sublattice even if they do no hopping.) Since the
maximum speed of diffusion can be rather slow compared to the speed with which
crystal-melt interfaces have been observed to move (23-25), the atom may be trapped on
a high-energy site by a rapidly moving interface. This implics a strong cross~coupling
between the fluxes and driving forces of the individual species (26). These assumptions
have been shown experimentally to be much more reasonable, at least for solute trapping
during rapid solidification (10-11), than that requiring each atom to actively hop into its
final site in the crystal.

In this paper we develop a chemical reaction rate theory for the kinetics of
crystallization of an ordered phase at an atomically "rough" interface; i.c., there are no
special sites such as ledges or kinks. The interface temperature, composition and order
parameter of the solid will be described as functions of the interface velocity and liquid
composition at the interface. It is the first theory to treat the simultaneous trapping of
solute and disorder. This is carried out by modeling solute trapping of the undesirable
species on each sublattice. The"?t::::)f the sublattice compositions yields the overall solid
composition; their difference yields the order parameter. First, Jhe conditions for

cquilibrium between a liquid and a solid phase consisting of two equivalent sublattices are




developed in a form required for the kinetic theory. Second, the kinetic theory is
presented: and third, numerical results for the growth of solid phases with first and second
order order—disorder transitions are presented.

2. Thermodvnamics of the Phases at Equilibrium

We assume for simplicity that the solid phase consists of two equivalent sublattices
a and J with no vacancies and that a total free energy function for the solid, GT is a
function of ng, the number of moles of component i (i = A,B) on sublattice j (j = a,4).
The constraint of equal number of lattice sites of the two sublattices requires that nf\y +
ng = n‘/,f + ng. One can formally define the chemical potential of component i on the j

sublattice as

. ST
aG
= g
on
i
The conditions for equilibrium in the solid phase are given by
« i3 ‘
ug —pp = [lg — 1y (2]

If we assume that the constraint on the number of moles on each sublattice also holds in

the solid at an interface with a liquid phase then one obtains at equilibrium

I

3 (nf+ 13) = 0§

1

L ey =k (3]

where “k and ug are the chemical potentials of the liquid phase. As a consequence of [2]

and [3], the conditions

o a L L
Hg ~HA T HB T HA
L L
“g - l‘/ﬁ\, = Hg T HA (4]
also hold at equilibrium. These conditions must be satisfied at the zero growth velocity
limit of any kinetic theory.

The free energy of the solid phase is usually written on a molar basis, G:?]‘ in.terms



of the compositions of A and B atoms on the @ and f sublattices, x/(\’, xg.

by

-

a_ S 1
x:\_‘\z\+:2_”
B S
AT XA T2
a S 1
Xg=Xg =37

1
X§=X]§+§T].

The long range order parameter, 7 is given by

1= xg - of s
and the solid compositions, xi, xg, are given by
S _1
<3 =304 + )
S_ 1
xg = i(xg + xg)
where clearly, \A + ‘B =1, xg + xg 1, xi + XISB = 1.

composition, the molar free energy GS} is given by

S 1, a_a a_ o i
szﬁ(“AkA‘FuBkB'{'“ﬁ)‘

8

xf\}, xg given

[7]

With these definitions of

At ;tgxg). (8]

If Gnsq is treated as a function of independent variables xg and xg then

S
« ‘,aGm
”B—”A a
6)\8
S
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ﬂ)_GS_xa m

3 (i + p) =

%(pB-F/tB)—GS +(1—x

- X

(9]
[10]
by (1)
*B
(’)GS
——‘3. [12)

If on the other hand independent variables, xg and n, are used



[97]

[107]

[117]
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It can now be seen that Eqn. [2] is equivalent to the ordinary condition for equilibrium

) ‘'m _
[6)) d(‘r. _(JT = 0.

3. Thermodvnamic Constraint on Solid Composition and Order Parameter During

Crystallization

The solidification process must always involve a decrease in free energy AG. Baker
and Cahn (27) have described the domain of possible solid compositions that can form for
various liquid compositions at a given temperature by requiring that AG < 0 where

AG = G2 — (ugxs + upx3) [13]

which is Eqn. [15] of Ref. 27 in a different form. Eqn. [13] is the basis for the usuaLl
“tangent to curve rule" to graphically show the change in free energy for a given phase
change. Here Gs’] is evaluated for the composition of the solid phase and uk and ug are
evaluated for the composition of the liquid phase. Application of this principle to the
present case will yield domains of possible order parameter and solid composition that can
solidify from various liquid compositions at a given temperature. Any prediction of a

kinetic model must yield values of 7, solid composition, temperature for each liquid

composition which will give AG < 0.




Figure 1 shows schematicallv the domain of possible order parameter which can
form at various temperatures {or a congruently melting compound if the liquid
composition is equal to the solid composition. These domains as well as the detailed
kinetic results described later in this paper depend on whether the ordered phase differs
from the disordered phase by a second or first order transition depicted in (a) and (b),
respectively. At the top are shown the free energies of the solid and liquid at three
temperatures. At the equilibrium melting temperature Tl’ only one value of 7 is possible.
Below Tl’ AG < 0 defines a range of possible 7 given in the cross hatched region in the
bottom of the figure. Note that only when the T < Tq in (a)or T < T2 in (b) can a._sqlid
with 7 = 0 form. In addition to the range of 7 which may be possible, a range of J:‘qmd
compositiox'; for each 7 and-selid-eompeosition is also described by the condition AG < 0
(not shown).

4. A Kinetic Model for the Interface

4.1 The Solidification Velocity—Composition Relation

We treat here the case of steady state continuous growth of an atomically rough
planar liquid-solid interface. Following the work of Aziz (1) for random crystalline solids,
the atomistic interdiffusion flux between adjacent liquid and solid monolayers must have
a specific value related to the growth rate and the compositions of the monolayers in order
to maintain the steady state. For the growth of an ordered phase, the interdiffusion flux
between the liquid and each sublattice must be considered.

To treat interdiffusion between the liquid and solid phase during crystallization we

use redistribution potentials ("B - "A) as defined by Aziz and Kaplan (2)1; viz.,

'Redistribution potentials can also be written in terms of activity coefficients A B and

free energies of the pure components GA’ GB as (;/B - /tA)/ = GB - GA + RT & it

oy — ~
D -

R I




(pB —/cA)/ = pug —py —RT o xg + RT f Xp- [14]
Redistribution potentials for the liquid phase, (p}i - /t‘k)/, and the a and g sublattices of
the solid phase, ( /4{-} - pg)/ and ( /Lg - ;1.‘{{)/ are obtained from a thermodynamic model of
the phases.

We consider a pair of reactions from initial states (of B in an a or §site in the solid
adjacent to A in the liquid) over a barrier to final states (where the two atoms have
exchanged positions) as shown in Figure 2. In a reference frame fixed on the crystal
lattice the forward reactions are designated, J Ba and Jgﬂ , and the reverse reactions, JB“
and J_ﬂ , and will be expressed in exchanges per unit time per unit area of o (or f)
sublattice. We assume the barrier to redistribution remains a constant height QD above
the state (initial or final) with the higher redistribution potential. Although other
assumptions are possible for the definition of the barrier height this choice is consistent

with that used for continuous growth of pure melts (28). Transitions from higher to lower

. 4
redistribution potential are written as the product of an attempt frequency X with a

Boltzman factor, exp {- R!I)v} Transitions from a lower to a higher redistribution
potential are written as
Yesp {~{Qp + [(ug ~ #p)” ~ (up — 5 [/RT)

The state which is higher or lower depends on the values of order parameter and -
composition.

Due to the above assumptions regarding the barrier heights it is necessary to
introduce parameters Ai (i = a,0) with

f (4 iv (L LY
0i (”B—”A) (/‘B‘#A) 20

A = [15]
: codi iy L L7

Lif (pg —mp) (g —pp) <0.

RT TA-
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Thus the interdiffusion fluxes are given by

, Qg + AYGE - a9 -l - W)
prao e Ly o { D B~ 1A B~ “x }
o _fod L. _ . [—[QD = ADIGE ~ n§Y - Gy - w) H]

Jp = gl —xp) exp RT

f —[QD + A l(l‘ﬂ - ﬂﬁ)/ - (I‘L - IILA)/]

JD'J— —Q——f'/’\ B(l -xB) exp [ 58 RT A B ]

— Qp + (1 - Apl(ug - # ) (Il - NL)/
_]DJ frA [L;(l "XB) exp { D B A B ] (16]

The parameter f is the fraction of sites at the interface where jumps can occur, A is the
jump distance, and 2 is the atomic volume (assumed the same for A and B). This
assumption regarding the barrier heights is identical to that made by Aziz and Kaplan
(2). It implies that the exchanges are governed by the properties of the interface and not
the bulk solid or liquid phases. One also could have introduced separate Qg and Qg for
the exchanges from the two sublattices, the consequences of which will be deferred to the
discussion section of this paper.

The net diffusive fluxes, Jg, and Jﬂ, are then

a _ +a  —

= D,/ x5 - xp)K

B _ +8_ 0
andJD—JD —JD

A (1-A)
= DO - Ky s -k )

g =Xl (18]
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where
o <
K =0 “l(l‘B - I‘A) (I‘B I‘A) |
Yo TP RT
d L L7
, N U
and

2 Qp §
Di = fvA €Xp {_RT} [_0]
which is called the interface diffusivity.

In order to maintain steady state conditions at the growing interface a mass balance
must he satisfied. In order to extract a simple model for the present we will assume that
interdiffusion in the liquid is fast enough to prevent lateral composition variations in the
first liquid monolayer and that interdiffusion in the solid is slow enough that lateral
exchanges (ordering) in the first solid monolayer do not occur. In this case mass balance

requires that

Ip = x5 ~xp)
15 = Hixg - xp) 1]

where V is the interface velocity. Equating expressions for the net diffusive fluxes we

obtain
A 1-A
B T L
A (1-Ap)
xg(l - xg)K ﬂﬂ— xII;(l - xg)Kﬂ B -gl—)— (xIL3 - xg) (22]

where VD = Di/’\'
One may choose to solve these equations for a given V and x]I; in order to find the
compositions of the a and f sublattices. This would yield the average solid composition

and the long range order parameter at the interface. For this purpose we require the
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redistribution potentials which depend on temperature and the various compositions
through a specific thermodynamic model of the liquid and solid phases. To determine the
temperature of the interface an additional equation relating the solidification velocity to
the driving force for solidification is required.

4.2 The Solidification Velocity—Temperature Relation

We will assume (28) that the solidification velocity V is related to the free energy
change for crystallization of AG according to

V=Ve [1 - exp (ﬁ—%)] (23]

where V C is a crystallization rate parameter. Following the general concept that
crvstallization is easier than solute redistribution, VC is assumed greater than V. In the
case of collision limited growth, VC may approach the speed of sound. If diffusive jumps
are required for crystallization VC can be approximated by the ratio of the liquid
diffusion coefficient to A, the jump distance. Thus, given thermodynamic potentials for
the phases and kinetic parameters V5 and Ve Eqns. [22] and [23] give the order
parameter, liquid composition, and temperature at the interface for any solid composition
and solidification velocity.

5. Choice of Thermodynamic Potentials

The predictions of this model will be examined for phase diagrams having a

congruently melting ordered phase at xg = %— Thus the order—disorder temperature of
the solid phase must be chosen to be higher than the congruent melting temperature. The
following form of the solid free energy, GE} , will also permit the comparison of the
predictions when this order—disorder transition is first~order and second-order:

S S

G5 =6 -x3) + 633
S

+Q{B( xg) 17)2}

+ Q.Zr) [24]
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+ 9 RT {(xB 511) fn (\B ,,n) + (x + 711) i (x + ?;1;)
4-(1——)\?3 777) i (1 —xlb 3 + (1 - IS3 21] (1 -

where Gi and G IS)' are the {ree cnergics of pure solid A and B and Qland Q,, are

1
+ 51)

constants. 1f 2, = 0 and ©, < 0, Eqn. [24] describes a Bragg-Williams phase with near
neighbor interaction Ql and ideal entropy. The n—dependence of the free encrgy curve for
xg = %—is shown schematically in Iigure 1a. The transition between the ordered and
disordered phase is a second order phase transition; i.e., the equilibrium order parameter
goes to zero continuously as temperature is increased. If Q,, < 0 and Q > 1209 the free
n-dependence of the free energy curve for ’*}Sg g is shown schematically in Figure 1b.
The transition between ordered and disordered phase is a first order phase transformation:
i.e., the equilibrium order parameter has a discontinuous drop to zero.
For the choice of GE} given in Eqn. [24], Eqns. [9-12] give
ng - uﬁ = Gg - Gi +Q,(1 - 2x153 -7 - 89.27;3
+ RT {fm (xIS3 —%n) ~fn (1 —xg + %n)}

ul -l =G§-G§ + 0,1 -2x3 + 7) + 8,7
+ RT {{n (\(B ) (1 - \183 —zn)} [25]

1 : 2
?(”X + ,ug) = G/S\ + Ql{(xg)2 —%r) } - 30‘)”4
1
+§RT{£n[1—xB n]}

)| 5,2
Buf + u) = G + 2, {(1 ~x§)* - 177} - 307"

1 S\2 12
+ 3 RT {0 [(xg)" - 701} [26]
and
S
(ug —uﬁ)’ = GB - Gi +Q (l - 2xg -n) - 892173
”B ~uB)’ GB Gi + 9,01 2xg + 1)+ 8021)3. [27]

For the liquid phase we will employ a regular solution model with




L, ol L2 L
uy = G+ (x)? + RT & (1 - x5)

L, oLy L2, om, L .
uiy = G + Q1 - xf)? + RT ta x5 (28]

where G /L\‘ and G}% are free energies of pure liquid A and B. The redistribution potential

is given by
L. L L L L ;
(nfy ~ny) = Gh -Gk + ol - ). (2]
Further we will assume that
L S _ AL S _
GA—GA—GB—GB—S(Tm—T) (30]

where S and Tm are the entropy of fusion and melting point of the pure components

(assumed equal). Eqn. [30] will guarantee a phase diagram which is symmetric about

N —

6. Approximate Result for Dependence of Order Parameter on Velocitv at a, Congruent

Melting Maximum

A simple expression can be obtained from Eqns. [22] for xlli = %which will provide
some insight into the numerical results described in Section 7. Both equations are

satisfied if xg = %and if the order parameter satisfies

\%
Q. + 392773 [(1 - - 2VD” 3]
31

IR ¥ S s v

for 7> 02. Note that two solutions, n = 0 and 5 # 0, exist. For V = 0 this equation gives

the equilibrium order parameter as a function of T for xg = 0.5 which could also have

been found using Eqn. [2]. As a kinetic equation for solidification, T represents the
interface temperature which can only be determined using Eqn. [23] in combination with

Eqn. [31]. However, if we consider that the interface temperature may be approximated

2For 5 > 0, Eqn. [31] is modified due to the A, factors and the theory predicts the same

behavior for + 7.
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hy the melting point of the ordered phase Tr(r)v then Eqn. 31}, after rearrangement,

Lecomes

an + 8(2.)7)3
= ] [32]

V{0 of
¥ 5= (I —n) = (1 + 7)exp
D 2 RT:?]

Q
This approximation predicts that 7 goes to zero as %/f— goes to (— ~1). For the

0
D 2RT m

case where Q,, = 0, the critical temperature for the order—disorder transition T ¢ is equal
& o v

to (- W)' Therefore the critical value of Vo where the long range order parameter goes
= D

to zero is given by

2

7
(v—) r—= -1 [34]
VB n=0 T
and hence the critical velocity is high when TC is high (i.e., when the ordering is strong).
When Q,, # 0, the critical velocity follows the same trend but is not so simply estimated.

7. Numerical Results

We will examine in parallel the calculated phase diagram and results of the
non—equilibrium interface theory for two cases with thermodynamic parameters given in

Table 1.

Table I. Choice of Thermodynamic Parameters

T (K)  S/R Q /R(K) @ /R(K)  Q/R(K)
Casel  1000K 2 0 ~3000 0
Case Il 1000K 2 0 2000 -566.2

7.1 Equilibrium Phase Diagram

Figures 3a and 3b show the equilibrium order parameter, N> of the solid as a -
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function of T for the two cases for xg = 0.5, obtained using Eqn. [2]. In I, the

order—disorder (OD) temperature is 1500 K (- —g]l{). In 11, the OD temperature is 1583 K
and is obtained by finding the temperature where GS for p = 0 is equal to GS for n = U
The dashed curve represents states where the ordered phase is metastable whereas the
dotted curve represents states where the ordered phase is unstable. Cases I and II are
respectively second and first order transitions.

Figures 4a and 4b show half of the phase diagrams for the solid phases only. In
Figure 4a no two—phase field exists between the ordered and disordered phase,
characteristic of the second order transition. The curve is obtained from Eqn. (2] by
letting 5 + 0. In Figure 4b a two—phase field exists. The boundaries are obtained by
equating the values of %(uf{ + ug) forn=0and n= T obtained from Eqn. [2] and
similarly the values of %(;tg + pg).

Figures 5a and 5b show the equilibrium diagrams using Eqns. {3} in combination
with Eqn. [2] to gencrate the liquid-solid equilibrium. In both cases the melting point of
the composition Xp = 0.5 is below the OD temperature. The diagrams contain "peritectic
reactions," L + O » D; however, in Figure 5a no discontinuity in slope occurs at the
liqu_idus at the "peritectic temperature” due to the second order nature of the OD
reaction. For case Il a metastable liquidus and solidus are shown dashed for the -
disordered phase. For case I such curves would represent unstable equilibriurﬁ and are
not shown.

&
7.2 Non-Equilibrium Interface Conditions for Congruently Melting Ordered Phase

In general there are two solutions to Eqns. [22] and [23] for the non-equilibrium
interface conditions: one for n = 0 and one for n# 0. The n # 0 solution only exists below
some critical value of V/ Vp Different parts of each solution are stable or unstable in the

sense that small fluctuations in the order parameter will lead to large changes in the
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interface conditions. Unstable portions will be shown dotted in the following figures. The
details of this stability analysis will be deferred until the discussion.

For \153 = 0.5 Eqns. [22] and {23] are satisfied for xlli = 0.5 and values of nand 1" as

; \'%
a function of %-— shown in Figures 6 and 7. For these results Vg was chosen to be 10
D D

In Figure 6a for case I, the order parameter goes to zero continuously as a critical value of

3

%,— is reached. In Figure 6b for case II the order parameter exhibits a turning or limit
'D

point at a critical value of %— If the velocity is increased above the limit point, the
D

order parameter must jump discontinuously to the n = 0 solution in case II. In Figure 6b
the branch below the turning point is dotted and represents unstable solutions. AtV =0
this unstable branch corresponds to the thermodynamically unstable equilibrium between
the liquid and solid (see T = T4 in Figure 1b).

In Figure 7, the interface temperatures for the 7 = 0, and 7 # 0 solutions are shown.
Again the dotted portions are unstable. For case I, the n = 0 solution is only stable above
the critical velocity. For case Il the 7 = 0 solution is always stable and corresponds to
the solidification of the metastable disordered phase.

Figure 8 shows cross plots of n and T. Points along these curves are parameterized

by %176 Also included in the figure are the equilibrium order parameter, N» VEIsus

temperature as shown originally in Figure 3.

7.3 Simultaneous Disorder and Solute Trapping

For compositions away from the congruent maximum of the ordered phase, the
possibility of non—equilibrium incorporation of solute (solute trapping) as well as disorder
trapping is possible. Figures 9 and 10 show the order parameter and liquid composition at
the interface as a function of V/VD for xg = 0.48 for the two cases. The behavior of the

S

order parameter is quite similar to that for Xg = 0.5. Figure 10 is shown with a

16




logarithmic scale for velocity to permit comparison to previous theory (1-2) on solute
trapping of disordered solids. In both cases I and 11 the composition of the liquid
approaches the composition of the solid at high velocity.

Near the velocity where 7 goes to zero in case I or where the turning point occurs in
case I1 in Figure 9, the liquid compositions shown in Figure 10 have abrupt changes. In
case | the lower curve for the 7 # 0 solution merges with that for the 5 = 0 solution.
Below this merge point the = 0 solution is unstable and is shown dotted. In case 1, the
liquid composition curve for the n = 0 solution is stable for all velocities. The liquid
composition for the n # 0 solution exhibits a turning point at the same velocity where 7
has a turning point in Figure 9b. In this case the lower branch is stable and the upper
branch is unstable. Thus for case II the theory predicts that with increasing velocity a
Jump in liquid composition at the interface occurs when 7 goes to zero. As shown, the size
of the jump is small but it of course depends on the thermodynamic potentials used.

It is also interesting to note that in case I 7 goes to zero at velocities where solute
redistribution remains significant while in case II complete disorder trapping occurs at a
velocity where solute trapping is practically complete. Numerical results for other values
of 2, and {2, not described here suggest that this is not a general trend for solid phases
with first and second order transitions.

8. Discussion

The validity of the assumptions regarding complete mixing in the first liquid
monolayer and the absence of lateral atomic rearrangements in the first solid monolayer
are ultimately tied to the values of the interdiffusion coefficicats in the solid (DS),
interface (D, ), and liquid (DL). In general it is reasonable to assume that DS <D, <Dy.
The present theory(\bestjaf)'f)iigé}when these differ by orders of magnitude. However, even

if Di approaches D[ , the assumption of complete mixing in the first liquid monolayer may
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only become suspect if the atom positions of each sublattice stays fixed laterally on the
liquid solid interface during growth. This could happen in some crystallographic

orientations of some crystal structures; e.g., growth of a chemically layered structure

cdgewise into the melt. In this case one would expect disorder trapping at lower
solidification rates than predicted by this theory. Relaxation of the assumption regarding
no ordering in the first solid monolayer would increase the state of order at any velocity
over that predicted by the theory. This ordering of the surface layer could be added to
that which occurs during solid state cooling to predict the state of order in a final (cold)
solid. The theory also has assumed that Qg = Qg or that the interdiffusion between the
liquid and solid do not depend on the sublattice. This condition can easily be relaxed.
One result of such a change would be that for solidification of a composition at a
congruent melting maximum, xg would not equal xIS3 except at V=0and V = w.

The results of the dependence of 7 on {-/,— may be viewed in the context of
D

bifurcation theory. Bifurcation theory describes the change in stability of solutions near

intersection (bifurcation) points and turning points. The two solutions p = 0 and 5 # 0

Q .

. \Y% . . . /
always intersect at g—# ~ 1 o — 1, which occurs at positive and negative values of V—\ .
D 2RT D

for case I and II respectively. At this point the stability of the n = 0 solution must
change. By replacing Eqn. {31}, which applies only for the steady state, with the time

dependent form of the flux balance, one obtains FO Y )(6-.-0, S

3
n + SQ,ZT) ”
RTY

m

9)
g—il:—%{?%n—(l-nH(Hn)exp[ 1
Srom which Jor n20,
rom Wi

 the stability of the various solutions can be inspected. 1f a positive perturbation of 5

makes the RHS of Eqn. [35] positive then ?1{1 < 0 and the perturbation decays and that
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portion of the solution is stable. Using this method the n = 0 solution can be shown to be
Q

stable only if %—— > -1 - . Similarly the stability of the 5 # 0 solutions can be

—)
D 2R I‘m
inspected. In case I, the i # 0 solution is always stable while the 7 # 0 solution for case Il
must change from stable to unstable at the turning point. The stable branch has negative

slope in the 7 versus %— plot. e

R r
I) N . RESENE Do

“zr I€

The slope of the curves,\in Figure 7, %%‘. are worthy of some discussion. The slope is
called the interface kinetic coefficient x and relates a simple measure of the departure
from equilibrium required to cause growth at various rates. It can be seen that the slope
is small near V = 0 and whenever 7 = 0. At velocities where 7 is changing, the slope is
much steeper; i.e., the kinetics become more "sluggish." A complex expression for g%; can
be found for x5 = % by differentiation of Eq. [23] and [24].

RT? ip
Near V = 0 or when 7 = 0, the kinetic coefficient is — -Krsn—(‘lr—) where AS is the plicable
C _

P S PR

¥ 2 .
entropy of fusion. When 7 is changed rapidly the kinetic coefficient depends on beth Vo 577

aiss and V. Thus the growth kinetics are controlled by Ve either when the solid is

disordered or when the solid is ordered at small V. At intermediate V the kinetics are
controlled by a combination of VC and Vp when the solid is ordered.

The present theory can provide some guidance in selecting intermetallic.compounds
which respond to rapid solidification to produce phases with non—equilibrium composition
or state of order. The former may be useful to provide the supersaturation necessary to
form a controlled scale of precipitation by subsequent heat treatment. Non-equilibrium
order produced by solidification will often be followed by rapid ordering during solid state
cooling. The fine antiphase domains structures produced by this process can provide

unusual starting materials for subsequent heat treatment (30).
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It is important to note that many complex ordered phases such as ¢ phases bear no
resemblance to simple disordered structures. The elimination of such phases by rapid
solidification and replacement by a simpler disordered phase is not an example where this
theory is applicable. Classical concepts of nucleation and growth competition must be
applied to these situations.

Quantitative predictions by this theory require good thermodynamic models for the
phases of interest as well as values for the kinetic parameters VC and V D Unfortunately,
measurements of equilibrium order parameter are often not available, especially for
materials of technological interest with high melting points. Thus the data base for
thermodynamic modelling is poor. Additionally functional forms of the thermodynamic
potentials used for ordered phase in many phase diagram cvaluations have improper
functional form near n = 0. This will severely impact the predictions of this theory.
Values of VC and Vpy can only be crudely estimated. Experiments on combined solute
trapping and disorder trapping using pulsed laser anncaling with the transient
conductance method to measure interface rates may provide insight in these parameters.
An analysis of the rate of ordering during solid state cooling must be included to obtain
the values produced by the interface itselfl. Two features are amenable to measurement.
Extremely fine antiphase domains should be present if the critical velocity has _b(‘oﬁ
exceeded. Also the abrupt behavior of the composition shown in Figure 10 when 5 goes 1o
zero may produce unusual microstructural features.
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Figure Captions

Figure 1. Schematic representation of the origin of the thermodynamic constraint on 7
during non—equilibrium solidification of a congruently mclting ordered phase. The
ordered solid phas::ﬁffer;( from the disordered solid phase by (a) a second order transition
g;:d (b) a first order phase transition. Top, solid free energy versus 7 and liquid free
energy varics temperatures Tl’ ’1‘2, T3. T1 is the equilibrium melting point of the
ordered phase, T2 is an arbitrary temperature for (a) and the metastable melting point of
the disordered phase for (b), and T3 is the unstable melting point of the ordered phase.
The condition, GS - GL < 0, defines a range of 5 as a function of solidification
temperature where solidification is possible at the bottom.

Figure 2. Reaction coordinate diagram for interface redistribution reaction. Initial states:
B on a or Bsite in solid, A in liquid. Final states: A on a or fsite in solid, B in liquid.
Figure 3. Calculated equilibrium long range order parameter in the solid, 7, as a function
of temperature for xIS3 = 0.5 (a) Case I, order—disorder temperature is 1500 K. (b) Case
I1, order—disorder temperature is 1583 K, dashed curve — metastable ordered state, dotted
curve unstable ordered state.

Figure 4. Calculated phase diagram for solid phase only for (a) Case I and (b) Case II.
(Diagram is symmetric about xg = 0.5).

Figure 5. Calculated equilibrium phase diagram for (a) Case I and (b) Case II. In (b) the
dashed curve corresponds to the metastable liquidus and solidus for the disordered phase.
Figure 6. Long range order parameter of the solid at the interface, 5, as a function of
dimensionless growth velocity, V /VD for the congruently melting compound at XISB = 0.5.
(a) Case I, (b) Case II. Capital lctters designate the common interface conditions in

Figures 6, 7, and 8.

Figure 7. Interface temperature T as a function of dimensionless growth velocity, %— for
D

23




the congruently melting compound at xg = 0.5. (a) Case I, (b) Case II. The dashed

curves eorrespond o the n = 0 solution.

Figure 8. Cross plot of order parameter and interface temperature parameterized by %17—
D

for (a) Case 1 and (b) Case I1. Also shown are the equilibrium order parameter at the
various temperatures taken from Figure 3.

Figure 9. Long range order parameter of the solid at the interface, 5, as a function of
dimensionless growth velocity, V/Vy for (a) Case I with xg = .48, and (b) Case II with
xg = 0.48. Capital letters designate common interface conditions in Figures 9 and 10.
Figure 10. Liquid composition at the interface x}g, as a function of dimensionless growth

velocity V/VD same cases as Figure 9.
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